Uranium Elemental and Isotopic Constraints on Groundwater Flow Beneath the Nopal I Uranium Deposit, Peña Blanca, Mexico

Presented to:
2005 GSA Annual Meeting

Presented by:
Steve Goldstein
Mike Murrell
Ardyth Simmons

October 17, 2005
Salt Lake City, Utah
Groundwater velocity is an important parameter influencing radionuclide transport at Peña Blanca and Yucca Mountain.

Groundwater hydrology at Peña Blanca is poorly understood: speed and direction.

Specifically identified need: conduct artificial tracer studies at Peña Blanca to detect SZ groundwater flow and transport.

This study uses natural U as a tracer of groundwater flow.

SZ groundwater velocity information is directly used by models of radionuclide transport, including TSPA.
Outline

- Saturated Zone Uranium Data
 - Concentrations [U] and isotopes \(^{234}\text{U}/^{238}\text{U}\)
- Modeling
 - One-Dimensional (1-D) Dispersion/Advection
- Conclusions
 - Limited groundwater flow and mixing are apparent
Panoramic View of New PB Wells
U Isotopic Results

The graph shows the 234U/238U (AR) values against the inverse of uranium concentration (1/[U] (1/ppb)) for different locations, including NW Ranch, Spring N Ranch, Pozos Ranch, PB1, PB2, PB3, and PB4. The values are plotted on the x-axis and y-axis, respectively.
Multiple Components for U

- Int. [U], High \(^{234}\text{U}/^{238}\text{U}\)
- Low [U], High \(^{234}\text{U}/^{238}\text{U}\) "Recoil"
- High [U], Int. \(^{234}\text{U}/^{238}\text{U}\)
- Low [U], Low \(^{234}\text{U}/^{238}\text{U}\)

\[1/[U] \text{ (1/ppb)}\]

\[^{234}\text{U}/^{238}\text{U} \text{ (AR)}\]
PB-1 and PB-2 isotopically similar, suggesting interconnectivity.

PB-3 has distinct composition and therefore may be located on a different flow path.

Generally, regional wells have distinct isotopic characteristics indicating limited mixing over larger length scales (km).

Newly drilled wells PB-1, PB-2, and PB-3 have elevated U concentrations which are decreasing over time (next slides).
U Time Series

During Well Conditioning

[\text{U} \text{ (ppb)}] PB1 and PB2

[\text{U} \text{ (ppb)}] PB3

Date

20-Mar-03 9-May-03 28-Jun-03 17-Aug-03 6-Oct-03 25-Nov-03 14-Jan-04

PB-1

PB-2

PB-3

During Well Conditioning
1-D Advection-Dispersion Model

Model Assumptions

- U introduced as a slug at \(t=0, \ x=0 \)
- U is a conservative tracer over short timescales (months-year)
- Analytical solution in Bear (1979)

Relative U concentration (C) controlled by position (x), time (t), groundwater velocity (V), and dispersion (D_h)

At point of U introduction (x=0),

\[
\frac{C_2}{C_1} = (\frac{t_1}{t_2})^{0.5}\exp\{V^2(\frac{t_1-t_2}{4D_h})\}
\]

Knowing \(C_2, C_1, t_2, \) and \(t_1 \), one can obtain a relationship between velocity and dispersion for each of the three wells:

\[
V = \{\ln[(\frac{C_2}{C_1})(\frac{t_2}{t_1})^{0.5}]4D_h/(t_1-t_2)\}^{0.5}
\]
Velocity-Dispersivity Relationship

![Graph showing the relationship between 1-D Flow rate (m/yr) and Hydrodynamic dispersion coeff. (cm²/s). The graph includes two curves labeled PB1 - peak and PB2,3 - peak.](image-url)
Field and laboratory data from Klotz et al. (1980).

Field site (Upper Bavaria, Germany) is composed of gravels with mean grain size of ~5 mm.

- Lines 1-5: Lab tests based on natural mixtures of more homogeneous sands with grain size of 0.1 to 1 mm.
- Lines 6-9: Lab tests based on natural mixtures of gravels from Bavaria
- Line 10: Field tests in Bavaria
Velocity Constraints

1-D U Slug Dispersion/Advection Model

- Velocity Constraints
 - \(V = 20 \text{ m/yr}\)
 - \(D_h = 0.004 \text{ cm}^2/\text{s}\)
 - \(V = 1.2 \text{ m/yr}\)
 - \(D_h = 0.00002 \text{ cm}^2/\text{s}\)

- Graph showing relationship between 1-D flow rate, \(V\), and hydrodynamic dispersion coefficient, \(D_h\), with peak values for PB1, PB2,3, Lab test relationship, and Field test relationship.
Modeling Uncertainties

- Field relationship between velocity and dispersion at Peña Blanca
 - German site is fairly typical of most aquifers (Gelhar et al. 1992).
 - Limestone aquifer data would provide a better approximation.

- Non-conservative behavior for U
 - U removal from solution would lower required flow velocity.
 - U addition to solution from rock-water interaction (aside from U slug) would increase required flow velocity.
Summary

- U isotopic data indicate multiple (4 or more) components for U in saturated zone water over various length scales (50 m to km).
 - Limited subsurface mixing apparent
- Decreasing U concentrations in the wells require limited flow and dispersion.
 - $V \sim 20$ m/yr
 - $D_h \sim 4 \times 10^{-3}$ cm2/s
- Additional work with artificial tracers would better establish flow velocity and direction at this site.
Ignacio Reyes and Rodrigo de la Garza, Universidad Autonoma de Chihuahua

Alfredo Rodriguez, Instituto de Ecologia

Ron Oliver and Andy Nunn, LANL

Pat Dobson, LBL

U.S. DOE, Office of Civilian Radioactive Waste Management, Office of Science and Technology and International