Realistic Quantification of Radionuclide Retardation under Unsaturated Conditions

Presented to:
2006 AGU Fall Meeting

Presented by:
(Max) Qinhong Hu

Staff Scientist
Lawrence Livermore National Laboratory
University of California

December 12, 2006
San Francisco, CA
Fracture-Matrix Interactions

Field observation (preferential flow in a fracture network) of dye distribution in unsaturated fractured tuff at Yucca Mt.
K_d Approach under Question

- K_d approach commonly used to describe sorption process in contaminant fate and transport studies and modeling

- Concerns of batch sorption approach for unsaturated rock: “maximum sorption potential”
 - Sorption kinetics; nonlinearity; competition
 - Unrealistically large water/solid ratio
 - Crushed rock used (sample sizes in the range of microns to sub-millimeters; more or less arbitrarily chosen); creating new surface and increasing pore accessibility
 - Well mixed
 - Difficult for fluid-solid-contaminant systems with weak sorption
Comparison of Batch vs. New Approach

Conventional approach

Unsaturated transport-sorption approach

Crushed Rock (μm to mm)

Saturated Batch Sorption Test

Intact Rock (cm scale)

Moisture Front

Nonsorbing Tracer Front

Sorbing Tracer Front

Unsaturated Transport and Sorption Test
Batch Sorption of Different Sample Sizes

<table>
<thead>
<tr>
<th>Sample</th>
<th>Size (µm)</th>
<th>Cs</th>
<th>Re / Tc-99</th>
<th>Np-237</th>
<th>Pu-242</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSw34</td>
<td><75</td>
<td>115±0.75</td>
<td>(-0.053)±0.010</td>
<td>3.13±0.054</td>
<td>1191±372</td>
</tr>
<tr>
<td>TSw34</td>
<td>75-500</td>
<td>59.1±0.93</td>
<td>(-0.067)±0.012</td>
<td>1.26±0.072</td>
<td>144±18.1</td>
</tr>
<tr>
<td>TSw34</td>
<td>500-2000</td>
<td>52.4±0.88</td>
<td>(-0.051)±0.016</td>
<td>1.09±0.039</td>
<td>99.2±5.18</td>
</tr>
<tr>
<td>CHz</td>
<td><75</td>
<td>73466±46508</td>
<td>(-0.119)±0.009</td>
<td>1.83±0.029</td>
<td>2813±1564</td>
</tr>
<tr>
<td>CHz</td>
<td>75-500</td>
<td>11461±4100</td>
<td>(-0.140)±0.043</td>
<td>1.07±0.041</td>
<td>312±56.9</td>
</tr>
<tr>
<td>CHz</td>
<td>500-2000</td>
<td>11935±7930</td>
<td>(-0.107)±0.032</td>
<td>0.937±0.10</td>
<td>278±65.1</td>
</tr>
<tr>
<td>CHv</td>
<td><75</td>
<td>677±96.6</td>
<td>(-0.064)±0.036</td>
<td>1.00±0.087</td>
<td>195±23.0</td>
</tr>
<tr>
<td>CHv</td>
<td>75-500</td>
<td>300±11.4</td>
<td>(-0.100)±0.013</td>
<td>0.269±0.025</td>
<td>31.7±6.88</td>
</tr>
<tr>
<td>CHv</td>
<td>500-2000</td>
<td>227±26.3</td>
<td>(-0.098)±0.005</td>
<td>0.162±0.009</td>
<td>17.9±1.87</td>
</tr>
</tbody>
</table>
Unsaturated Transport-Sorption Approach

- Cylindrical rock cores, epoxy-coated along length
- Imbibition rate monitored continuously over time
- Sample size (cm range)
- Different initial water contents
- Tracer solution
Laser Ablation/ICP-MS for Micro-Scale Profiling

ICP-MS

LA

2.1 mm view area

100 µm pit

Vertical height (µm)

Horizontal distance (µm)

1 pulse
- 5 pulses
- 10 pulses
- 25 pulses
- 50 pulses

0 20 40 60 80 100 120 140 160 180 200

Department of Energy • Office of Civilian Radioactive Waste Management
Calibration Curves of LA/ICP-MS

![Graph showing calibration curves for various elements with concentration on the x-axis and intensity ratio on the y-axis.](image)

\[C_{samp}^{a} = C_{ref}^{a} \left(\frac{C_{samp}^{is}}{C_{ref}^{is}} \right) \left(\frac{I_{samp}^{a}}{I_{a}^{ref}} \right) \left(\frac{I_{ref}^{is}}{I_{is}^{samp}} \right) \]
Unsaturated Transport-Sorption Results: TSw

- Initially dry
- Strong capillarity
- Advection

Initially moist
- High permeability
- Dispersion
Unsaturated Transport-Sorption Results: CHv

Initially 98% RH; exp. duration 1.0 min

Initially dry; exp. duration 2.5 min

Initially 98% RH; exp. duration 1.0 min

Ca-44, Cs-133, Re-185, Np-237, Pu-242
Comparison of Preliminary K_d Results (mL/g)

<table>
<thead>
<tr>
<th>Tracer</th>
<th>Imbibition</th>
<th>Column</th>
<th>Batch</th>
<th>Literature values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr</td>
<td>0.37</td>
<td>> 16</td>
<td>20</td>
<td>5 - 30</td>
</tr>
<tr>
<td>Cs</td>
<td>0.44</td>
<td>> 16</td>
<td>50</td>
<td>10 – 700</td>
</tr>
<tr>
<td>Sm</td>
<td>6.8</td>
<td></td>
<td></td>
<td>100 - 1000</td>
</tr>
</tbody>
</table>

Need numerical simulators (e.g., HYDRUS) for transient transport to obtain K_d values.

$R_f = \frac{L_{\text{nonsorbing}}}{L_{\text{sorbing}}} = 1 + \rho_b \times \frac{K_d}{\theta}$

Approach Characteristics Weak sorption Strong sorption

Batch static, crushed +

Column flowing, crushed + +

Imbibition flowing, intact + +
Summary

- Concerns raised about effective K_d approach in unsaturated fractured rock
- Preliminary results indicating that sorption results (batch and/or column) using crushed sample could overestimate the extent of sorption in intact rock
- The new approach, which is especially useful for fluid-solid-radionuclide systems with weak sorption, expected to generate more realistic sorption data (under unsaturated transport conditions) for flow and transport modeling
Acknowledgments

DOE - Office of Civilian Radioactive Waste Management (OCRWM) – Office of Chief Scientist (OCS) – Science and Technology (S&T) Program

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.